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Nonequilibrium Discontinuous Phase Transitions 
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Two-dimensional lattice-gas models with attractive interactions and particle- 
conserving hopping dynamics under the influence of a very large external 
electric field along a principal axis are studied in the case of off-critical densities. 
We describe the corresponding nonequilibrium first-order phase transitions, 
evaluate coexistence and spinodal lines, and make some comparisons with 
experimental observations on fast ionic conductors. 
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1. INTRODUCTION 

Several versions of the Ising model, including the so-called fast ionic 
conductor model, have been used during the recent past in the analysis of 
stationary nonequilibrium states. 4 The fast ionic conductor model is a 
lattice-gas version of the Ising model, where ions are located at lattice sites 
and interact via a nearest neighbor pair potential J, provided with a 
stochastic dynamics consisting of jumps to neighboring unoccupied sites 
under the influence of both a thermal reservoir at temperature T and a 
uniform external electric field E. In the absence of the latter (E= 0), the 
transition rates are such that the stationary state of the system is the Gibbs 
equilibrium state at the reservoir temperature T. However, a uniform field 
E along one of the principal directions of the lattice, say 2, which forms a 
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closed loop, e.g., by assuming a lattice with periodic boundary conditions, 
biases the jumps in the direction 2 and produces a net steady current of 
ions in the system; the (stochastic) interaction with the reservoir then 
maintains a steady nonequilibrium condition by dissipating the heat 
generated by the current. 

Previous studies on that model, e.g., in the case of a saturation field 
E ~  o% (1) demonstrated the existence of a second-order or continuous 
phase transition at a certain critical temperature T~* when the lattice is 
half-filled with particles or ions. They also revealed that, while the phase 
segregation when E =  0 occurs into randomly oriented regions below T~, 
the equilibrium critical temperature, the nonequilibrium states for E C0, 
are highly anisotropic, e.g., they consist below T~* of two dimensions of a 
fluid or particle-rich phase whose particles are clustered into a single strip 
parallel to the direction 2, coexisting with a gas or particle-poor phase fill- 
ing homogeneously the rest of the system. Moreover, it was found that 
T~*>Tc for J > 0  (i.e., attractive interactions between particles), that 
T~* < T c for J <  0 (repulsive), and that there is a sudden break in the slope 
of the current versus temperature curve at T~*. (1) 

These and other reported features of the models seem to characterize 
essentially a class of materials having promising technological applications, 
namely solid electrolytes capable of relatively large ionic conductivities 
below the melting point. (2 5~ When making comparisons with related 
experimental observations, however, one needs to concentrate on the most 
appropriate versions of the idealized models. Accordingly, we consider in 
this paper the case of a two-dimensional fast ionic conductor model with 
attractive interactions and very large external electric field when the par- 
ticle density is smaller than critical, the case considered in II; the model 
system in the present case undergoes a first-order or discontinuous phase 
transition very similar to the one shown by most real materials. In addition 
to some sensible comparisons with experimental results, our model then 
allows the evaluation of coexistence and spinodal lines, and the study of 
the corresponding system relaxation showing the existence of metastable 
states that are very different in nature from the intermediate multi-strip 
states reported in II for half-filled lattices. The fact that we restrict our- 
selves here to the two-dimensinal case is also favorable when trying to 
interpret experimental observations in the light of the behavior of the 
model, given that solid electrolytes sometimes present low dimensionality 
effects, as we shall discuss later. On the contrary, our restriction to the case 
J >  0 was motivated by simplicity and by the fact that the phase transition 
seems to be suppressed in the presence of the external electric field for J < 0 
in some cases (1~ (also, J >  0 is more suitable for a Monte Carlo analysis). 
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2. S Y S T E M  EVOLUTION A N D  M E T A S T A B I L I T Y  

The model system of interest here is precisely the one described in II, 
except that the system density, 

p= N l ~ n i (2.1) 
i 

where N =  L 2 and n i=  1 (ion) or 0 (hole), is the occupation variable at 
each lattice site i = 1,..., N, and is allowed to have values differing from the 
critical one, p = 1/2; we thus refer to II for most details and definitions and 
for the relevant bibliography. In the present case we report on computer 
simulations for p = 0.05, 0.075, 0.1, 0.2, and 0.35 at several temperatures, 
which complement the case p = 0 . 5  considered in II. The computations 
refer to lattices L = 50 and 100; our conclusions here seem mostly indepen- 
dent of finite-size effects. 

The initial configuration for each experiment was, unless otherwise 
indicated, the one corresponding to infinite temperature, i.e., random dis- 
tribution of pN particles over the N lattice sites. The evolutions then lasted 
until the distributions of values for the order parameter m(T) and for the 
configurational energy u(T), both quantities defined in II, approached 
good Gaussians (excluding the values corresponding to the initial transient 
regime); this required typically between 105 and 106 Monte Carlo steps. 

As in the case p = 1/2, when the system with p < 1/2 is quenched below 
the coexistence curve, say below some temperature T*(p), the system is 
seen to segregate into two phases, the liquid phase being highly anisotropic 
under the influence of the infinite external electric field. This shows up, for 
instance, in the presence of striplike configurations below T*(p) such as 
those in Fig. 1. The configurations above T*(p) also reveal typically some 
ordering (cf. Fig. 1), namely anisotropic clusters preferentially directed 
along the field direction, an effect discussed in some detail in II. 

During the evolutions at p=0 .35  below T*(p), the systems with 
L = 50 first segregate, as was the case for p = 1/2 in II, into two rather 
compact strips along the field direction, which then finally coalesce during 
our evolutions to form the expected one-strip stationary states; see Fig. 2. 
When p ~< 0.2, on the contrary, there are not enough particles in the system 
to build up those intermediate states, and the evolution most often 
proceeds directly through one-strip states, which become more and more 
compact with time. 

In addition to the above intermediate multistrip states, the system with 
p < 1/2 presents well-defined metastable states. These are quite evident in 
the case p ~< 0.2, as depicted, for instance, in Fig. 3. 

We would like to emphasize at this point the very different nature 
shown by the intermediate multistrip states, as in Fig. 2, and by the real 



124 Marro and Vall6s 

i 

i . . . . . .  I 

J 
( c )  ! �9 �9 ~ 

x 

�9 • 

Fig. 1. Typical configurations during the stationary regime in the case of a lattice L = 50 
with periodic boundary conditions under the influence of an infinite external electric field 
along the horizontal direction. (a) p=0 .2  and T =  1.13To< T*(p), where To. represents the 
equilibrium (Onsager) critical temperature. (b) p =0.2 and T =  1.2To> T*(p). (c) p =0.35 
and T =  1.2To< T*(p). (d) p =0.35 and T =  1.4Tc> T*(p). 
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Fig. 1 (continued) 

metastable states revealed by Fig. 3. The former  might  be termed 
metastable in the sense that  they satisfy the criterion in t roduced by Binder 
and Mfi l ler-Krumbhaar .  (6) That  is, given a relaxing macroscopic  quant i ty  
A, one may  define the relaxation function 

A ( t ) - A ( ~ )  
~A = (2.2) 

A(O)--A(~) 
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Fig. 2. Evolution of the order parameter in the case L=  50, p =0.35, and T= 1.25T c. One 
observes the abrupt relaxation of the system from an intermediate, segregated two-strip state 
to the final, stationary one-strip state. 
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Fig. 3. Evolution of the order parameter in the case L=50,  p=0.1, and T=0.8T C. One 
observes the abrupt relaxation of the system from a real, metastable, nonsegregated state to 
the final one-strip segregated state. 

and the associated relaxation time 

rA = dt qSA(t ) (2.3) 

A metastable state is then characterized by the absence of a noticeable 
evolution on a macroscopically large enough time scale and, consequently, 
by the presence of a plateau in the function qsA(t ). This is certainly the case 
when A represents, for instance, the order parameter or the configurational 
energy during evolutions with intermediate states such as the one represen- 
ted in Fig. 2. Actually, the lifetime of those intermediate states increases 
with decreasing temperature and, as reported in II, it was observed to 
practically diverge in some cases for p = 1/2. 

The fact that multistrip states are not real, metastable, however, 
follows immediately by considering the three properties listed by Penrose 
and Lebowitz (7) characterizing metastable states: (i)only one thermo- 
dynamic phase is present (and usual thermodynamics applies to it); (ii) an 
(isolated) system that starts in this state is likely to take a very long time, 
say years, to get out; and (iii) escape from the metastable state is an 
irreversible process. The two-strip states reported for L =  50 certainly 
accomplish (ii), as noticed in the previous paragraph, and (iii); actually, we 
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never observed reversibility for p 4 1/2. However, they are segregated 
states, thus violating (i). Even more, their nature is size-dependent in the 
sense that, as clearly observed for p = 1/2, the number of strips in the 
longest lived intermediate multistrip state increases with L, and qsA(t ) 
evolves in those cases via several abrupt steps. On the contrary, states such 
as the one reported in Fig. 3 for t~<3x 10 5 MC steps are metastable 
according to all the above criteria. In any case, it should be remarked that 
both muttistrip and metastable states are in this case a nonequilibrium 
effect, and that the former do not seem to have an equilibrium counterpart. 

3. COEXISTENCE A N D  S P I N O D A L  LINES 

Another distinct feature of the case p < 1/2, as compared to that of a 
critical density in II, is depicted by the histograms in Fig. 4. That is, when 
p < 1/2 there is no symmetry around Lp and, in particular, the longitudinal 
case presents two different peaks [the small one almost imperceptible in 
Fig. 4 because it corresponds to T< T*(p), so that the strip configuration 
is not very compact]. 

A more quantitative picture of the anisotropic phase segregation can 
be obtained from the behavior with p and T of the order parameter, 

/,f/(p)_ i[Io( l _ p ) ]  1/2 [<M~>T-- (M#>t]  '/2 (3.1) 
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Fig. 4. Number of columns ( [ ] )  in the direction of the field and (O)  in the direction perpen- 
dicular to the having p = 0 ,  1,..., L - 1  particles, versus p in the case p =0.2 and T =  1.15T c. 
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where M 2 and M~ represent, respectively, the squared longitudinal and 
transverse magnetizations defined in II. As shown by Fig. 5, re(p) as a 
function of temperature follows in the case p =0.35 a continuous trend 
quite similar to the one for p = 1/2, while it presents for p ~< 0.2 a discon- 
tinuity at a temperature T*(p) associated with the previously reported 
metastable states near T*(p). The situation is clearly that of a first-order or 
discontinuous phase transition for p ~< 0.2, this probably being too weak at 
p = 0.35 to be evidenced by our data. This seems confirmed by the data we 
report in Section 4. 

Table I lists the values we finally evaluated for the transition tem- 
perature T*(p), T,*=-T*(p=I/2) corresponding to the critical tem- 
perature characterizing the second-order phase transition described in II. 
These were obtained basically as the mean temperature between the closest 
arrows representing relaxations from metastable states, as indicated in 
Fig. 5; the error bars reported in Table I, increasing with p, aim to locate 
approximately the corresponding limit of metastability or spinodal line. 
More accurate methods of computing the coexistence and spinodal lines (8"9) 
are expected to give essentially the same result, while they would require 
prohibitive amounts of computer time in the present case, where one has to 
deal with the presence of transient states with several strips, anisotropic 
clustering above T*(p), and stronger finite-size effects than usual. 

m(p 
1 

O. 8 ~t  
1 o~ % 

O. 2 ~--~-a_,& -'~ 

0 I , t , I , I , I , 

0.7 o.g 1.1 1.3 1.5 

T/To 
Fig. 5. The order parameter as defined by Eq. (3.1) as a function of temperature for different 
values of p = (A)0 .1 ,  ( 0 ) 0 . 2 ,  ( x ) 0 . 3 5 ,  and (*)0.5. The vertical arrows locate the closest 
transitions observed between the corresponding two branches when the system is heated from 
zero temperature and cooled from infinite temperature, respectively. 
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Table I. Transition Temperature As 
a Function of pa 

p T* 

0.50 1.355 __+ 0.003 
0.35 1.32 + 0.02 
0.20 1,16 +0.02 
0.10 0.84 __ 0.04 
0.075 0.67 __+ 0.13 
0.05 0.37__+0.18 

"The  error bars represent the location of 
the closest metastable states we observe 
during the system evolution; cf. Fig. 5. 

The resulting phase diagram is shown in Fig. 6, where it is compared 
with the equilibrium Onsager case and with the classical mean-field result. 
Two facts seem to follow from Fig. 6. First, the present (pseudo-) spinodal 
is much closer to the coexistence curve than in the usual classical theory 
(see, e.g., Ref. 10). Also, the experimental data for both re(T, p = 1/2) and 
T*(p) near T,* lie between the equilibrium and mean-field results, thus 
apparently confirming that the basic model belongs to a new universality 
class. 

1.5 FT/Pc 

i / " " ' ' - - z  ...... 

r 
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O0 0.] 0.2 0.3 0.4 0.5 
P 

Fig. 6. A representation of the ( �9  transition temperatures in Table I with the 
corresponding "error bars" (see text) locating the limit of metastability. ( - - )  The classical 
mean-field result, (- -) the equilibrium Onsager result, both normalized to T* = T*(p = 1/2). 
(*) The curve re(T) for p = 1/2 described in II. ( . .-)  A guide to the eye associated with the 
circles; ( - - - - - )  the Onsager result. 



130 Marro and Vall6s 

4. ENERGY, SPECIFIC HEAT, AND STRUCTURE FUNCTION 

The nature of the phase transition may also be investigated by looking 
at other relevant quantities; we refer to II for their precise definition. In 
particular, the configurational energy (Fig. 7) and the particle current in 
the direction of the field (Fig. 8) reveal the characteristic discontinuities, 
and the structure function (Table II) behaves quite anisotropically and its 
maximum is observed to increase very abruptly with decreasing tem- 
perature below T*(p). 

The specific heat, which is computed here as the temperature 
derivative of the configurational energy by making cubic interpolations to 
the data, is represented in Fig. 9. This presents a clear discontinuity for 
p ~< 0.2, a behavior quite different from the case p = 1/2 (cf. Fig. 8 in II) and 
perhaps also differing qualitatively from the case p = 0.35. 

5. C O M P A R I S O N S  WITH EXPERIMENTAL OBSERVATIONS 

The great interest in the properties of fast ionic or superionic conduc- 
tors (FIC) during the last decade (2 4,11 13) essentially has been motivated by 
their promising technological applications(4); e.g., they may reach ionic 
conductivities of the order of 1/2 ~ cm ~ well below the melting point (as 
compared to 10 8,(2 1 cm ~ for the solid NaC1 at 200~ Those studies, 

u (P) 

0.7 0.9 i.i 1.3 1.5 

T/T  
Fig. 7. Total configurational energy as a function of temperature for different values of p; 

same symbols as in Fig. 5. 
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Fig. 8. 
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Particle current in the direction of the field as a function of temperature for different 
values of p. Same symbols as in Fig. 5. 

however, have also revealed a more fundamental interest of FIC; they are 
outstanding examples of (relatively simple) systems with stationary non- 
equilibrium states showing both continuous and discontinuous 
instabilities (1) and also relating in some way liquid and solid properties. 
The latter follows when one realizes that FIC typically possess at high tem- 
peratures the conductivity of some melts and the mechanical properties of 
some solids, and that typically (e.g., in the case of c~-AgI), a type of ion 
(Ag*) seems to move in a liquidlike fashion through a lattice set up by 
another type of ion (I ) , (14)  so that one has to deal in practice with the 

Table II. Representative Values of the Structure Function S(k  x, k v = 0  ) 
for Di f ferent  Values of kx=  ( 2 n / L ) n  x, n x = l ,  2, and 3, and L = 50 

s(~, ~,=0) s(~x, Ay=0) 

T/T,. n x = l  n x = 2  n x = 3  TIT c nx=  1 n x = 2  n x = 3  

0.7 322 212 99 1.1 372 126 52 
1.0 167 124 74 1.25 260 96 18 
1.12 104 74 43 1.3 110 71 26 
1.2 < 5 < 5 < 5 1.35 62 28 16 
1.3 <3 <3 <3  1.4 < 10 < 10 < 10 
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Fig. 9. The specific heat, defined as the temperature derivative of the total configurational 
energy, as a function of temperature for different values of p. Same symbols as in Fig. 5; the 
dashed lines are guides to the eye. 

interesting phenomenon of the diffusion of a liquid through a solid. This 
outstanding mobility of the conducting ions (whose number is typically of 
the order of the Avogadro number) is usually associated with the existence 
of a large amount of vacant positions in the lattice, either lattice sites or 
interstitials, (2) this apparently causing the onset of the high-conductivity 
phase often to be characterized by large discontinuities. In any case, it 
seems clear that a large degree of disorder sets in at the (nonequilibrium) 
transition temperature, probably as a consequence of the "melting" of one 
of the sublattices, and sometimes a corresponding change of entropy was 
measured comparable to the one for the melting in that material. (18'191 

Such features of FIC seem certainly well mimicked by our model 
system, e.g., in the case p < 1/2. As a matter of fact, the claim that the over- 
simplified model captures many essential physical features of FIC is sup- 
ported by the observation that quite different materials (inorganic crystals, 
glasses, polymers, etc.) seem to present the same basic phenomena, 
including the case of ice, where there was a recent report (15) of a first-order 
phase transition at high temperature to a state characterized by a large 
concentration of ionic defects allowing a high conductivity. It is true that 
most experiments refer to relatively small electric fields as compared to the 
"infinite" one in the model; however, previous studies of the model 
with several fields (1) seem to reveal only quantitative differences when 
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considering the infinite-field limit, a case more suitable for a theoretical 
analysis, and on the other hand, the fields considered by experimentalists 
may be well within the saturation regime. 

When making comparisons with the behavior of real materials, one 
should also realize that the conductivity in FIC frequently occurs as a low- 
dimensionality effect. For  instance, the substance hollandite is known to 
behave as a quasi-one-dimensional conductor, where K § ions are com- 
pelled to move in channels, (16) and the conducting ions in AgCrS2 always 
remain within lattice planes. (17) This suggests in particular an unusual 
physical relevance of the one- and two-dimensional model systems in this 
case. On the other hand, the fac that one- (or quasi-one-) dimensional 
materials undergo phase transition phenomena may indicate the existence 
of some mean-field effects, a fact also revealed by the analysis of the model 
in the preceding sections and elsewhere. (11 

The global experimental situation is in practice rather varied. That is, 
while the onset of a high ionic conductivity below the melting point is 
usually associated with typical phase transition phenomena, the reported 
nature of those phenomena was used to classify FIC. (2) The type I materials 
are characterized by a well-defined first-order phase transition, e.g., AgI 
presents a four-decade jump in the conductivity at the transition 
temperature. The most general behavior of the materials in this group is 
certainly represented very well by our model with p < 1/2. We do not 
attempt a specific comparison in this case because the experimental results 
are not very clear-cut, e.g., due to the presence of polymorphic transitions 
and hysteresis and other effects. 

The materials reported as being of type II, on the other hand, are 
supposed to be characterized by a second-order phase transition, though 
we believe, in light of the discussion in the previous sections, that they 
present more generally a weak first-order transition (5) or a transient 
behavior such as the one shown by our model in the case p=0.35.  
Actually, the materials in this group show a conductivity versus 
temperature curve that only reveals a change of slope at the transition 
temperature, either abrupt (as in AgCrS2) or more gradual (as reported for 
PbF2, perhaps due to experimental difficulties producing a "diffuse 
transition"), and the specific heat shape measured (2) in AgCrS 2 is also very 
similar to the one in Fig. 9 for the model with p ~ 1 / 2 .  In order to 
emphasize the close similarity between some experimental results and those 
in our model, we present in Fig. 10 the extrapolation for L--,  oo of the 
current along the field directions Jx in the case of the model with p = 1/2, 
together with the ionic resistance for some real materials. The similarity is 
indeed very remarkable when one realizes that the experimental result 
refers to a three-dimensional situation, and that it corresponds to p = 0.29 
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and involves a structural change from cubic to rhombohedric. (2~ The 
behavior of ix for the model also compares very well in Fig. 10 with that of 
the ionic conductivity measured, for instance, by Hibma (21) in AgCrS2; this 
material is indeed very comparable with the model, given that it presents a 
two-dimensional conduction and approximately half the accessible sites are 
known to be vacant, ~17) so that p ~ 1/2. 

There are few detailed studies of the critical properties of FIC; Refs. 5, 
20 and 22 report critical behavior close to the one corresponding to the 
equilibrium three-dimensional Ising model. More experiments in this area 
would be very helpful, specially those concerning low-dimensionality 
materials and large external electric fields, focusing on the nature of the 
nonequilibrium phase transition and critical properties. 

Finally, we mention that, in addition to the above types of FIC, 
experimentalists have reported on the existence of a type III, e.g., 
Na-/?-A1203 .(2) This, however, is not well represented by the model here, 
because the corresponding conductivity in those materials is observed to 
increase exponentially over a broad range of temperatures, probably 
reflecting that sharp cooperative effects are absent. It also seems puzzling 
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Fig. 10. The particle current along the field direction, as measured in the model when 
p = 1/2 by making an extrapolation to L ~ 0% compared with some experimental results. ( � 9  
Infinite-size model, y =  12.2/jx; (*) AgCrS2J 21) y =  3(crT*) ~ where t~ represents the ionic 
conductivity in units of (s -1 and T* =-673 K; ( - - )  NH4Ag4Is ,  12~ y = 270/R, where R 
represents the ionic resistance in units of ohms, and T* ~ 198.68 K. The units for the vertical 
axis are thus arbitrary. 
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that some real materials reported as being of types I or II apparently 
contain antiferromagnetic couplings, while some versions of the model with 
J <  0 (instead of J >  0 as in the present paper) show the suppression of the 
original antiferromagnetic phase transition when the (strong) external 
electric field is turned on. (1~ This compels one to think that the pre- 
dominant or effective interactions in those materials might be ferro- 
magnetic-like, and it suggests as well studying the model with J <  0. 

6. C O N C L U S I O N S  

The lattice-gas model (with periodic boundary conditions and the 
distinguishing feature that the particles are interpreted as positive ions 
interacting via a nearest neighbor attractive potential), under the influence 
of an external saturating electric field along one of the principal lattice 
directions, constitutes a good (oversimplified) model system to study the 
interesting properties of the so-called fast ionic conductor (FIC) materials. 
These properties, it should be stressed, are a stationary nonequilibrium 
effect: the field induces a current of particles in the system, this generating 
heat, which is dissipated by means of (stochastic) interactions between the 
ions and the involved thermal reservior at temperature T. 

An extensive Monte Carlo study in two dimensions also reveals a 
critical point at density p = 1/2 and temperature T* > T~. (the equilibrium, 
Onsager critical temperature), while the FIC model undergoes discon- 
tinuous or first-order phase transitions for p ~ p,.; the discontinuities, if 
any, are extremely weak within the range 1/2 < p < 0.35, and quite evident 
for p ~< 0.2. The segregation below, say, T*(p), T*(p,) =- T,*, is anisotropic 
in the sense that it produces orientated domains, namely the system 
asymptotically relaxes into a particle-rich strip along the field direction 
coexisting with a homogeneous particle-poor gas. The computer 
simulations showed two different kinds of intermediate states: (a)When p 
is large enough, say, for p > 0.2, the system first segregates into a multistrip 
state; the number of strips and the time of escape seem to increase with 
system size, the latter also increasing (even diverging) with decreasing tem- 
perature. (b)Metastable states below and near the coexistence line T*(p) 
have the usual (equilibrium) features, e.g., they are nonsegregated. No 
doubt it would be interesting, and feasible, to attempt a dynamical descrip- 
tion of the phase segregation processes in the FIC model following the 
trends familiar from nucleation and spinodal decomposition phenomena 
(see, e.g., Ref. 23). 

Concerning the stationary (nonequilibrium) properties, the coexistence 
line T*(p) (as it occurs with the relevant critical exponents at T*) is 
halfway between the equilibrium one by Onsager and the classical one by 
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Landau, both normalized to T~*. There is a rather well-defined spinodal 
line; this is a mean-field feature, but it lies closer to T*(p) than predicted 
by the classical theory and it is not so close to T*(p) (and is more abrupt) 
than observed during computer simulations of the equilibrium lattice-gas 
model (see, e.g., Ref. 24). It is also noticeable (Fig. 6) that T*(p) > T(p) for 
p >0.15, while T*(p)< T(p) for smaller values of p; T(p) represents here 
the equilibrium, Onsager coexistence lines. This is a consequence of the 
action of the electric field: it strengthens the correlations above T,. in such a 
way that it produces instability within the temperature range Tc < T <  T~*, 
while it destroys the equilibrium clusters near T(p) for p <0.15 when the 
number of particles is insufficient to form a strip. 

We have also computed in the model relevant physical quantities, in 
addition to the order parameter, such as energies and specific heats, the 
structure function as it could be measured in scattering experiments, 
ordering susceptibilities, and particle currents. They globally confirm the 
above facts and, most interesting, allow us to make the first contact 
between the behavior of the model and the observations in FIC materials. 
For instance, a comparison between our data in Fig. 9 and those reported 
for the specific heat in real materials, (5"2~ together with a close inspection 
of the comparison, as in Fig. 10, between the behavior of the currents, 
conductivities, and resistances, (2~ adscribes a clear physical significance 
to the reported existence (2/ of two types of FIC materials; type I would 
correspond to the case p < 0.2 in the model, characterized by strong dis- 
continuities, while the materials termed type H seem to include both the 
case of a critical density with a second-order phase transition and the case 
Pc < P < 0.3 discussed before. Those comparisons also allow one to identify 
and confirm some other features of FIC, as described in the preceding 
section, even though the available experimental data refer to materials that 
are in principle not so comparable to our oversimplified model. Similar 
studies concerning more realistic models ( J < 0 ,  more extended inter- 
actions, etc.) and, moreover, new experimental measurements on FIC 
materials would be very helpful; in particular, motivated by the apparent 
existence of a new universality class, experimentalists should concentrate 
on the computation of critical indexes in the case of low-dimensionality 
FIC materials such as those where the ionic conductivity occurs in planes, 
in the presence of a saturating field. 
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